
AD-A236 837
1111IlEIIIEA

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
ELECT[

THESIS

A Specification and Analysis of the
IEEE Token Bus Protocol

Lauren J. Charbonneau
June 1990

Thesis Advisor: G. M. Lundy

Approved for public release; distribution is unlimited.

91-01879l ll~ltll lli lll llI lt9 1 ; I ; t "

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlinited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

Ga. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Computer Science Dept. (V i abl') Naval Postgraduate School
Naval Postgraduate School 52

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, ,"tate, and ZIP Code)

Monterey, CA 93943 Monterey, CA 93943

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Naval Postgraduate School

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Monterey CA 93943 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
A Specification and Analysis of the IEEE Token Bus Protocol

12. PERSONAL AUTHOR(S)
Chaibonneau, Lauren J.

13a. TYPE Or REPORT 13.IME COVERED 14. DATE OF REPORT (Year, Month. Day) 1. PAGE COUNT
Master's 1ltesis FROM 09/89 TO 06/90 June 1990 87

16. SUPPLEMENTARY NOTATION
Thie views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the
U.S. Govemment.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP token bus protocol, systens of communicating nachines, systems state
analysis

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
In this thesis a formal description technique, systems of communicating machines, is used to specify and analyze a token

bus prolocol. A simplified description of the protocol is given, and proofs of certain correctness properties presented. The
analysis proves that the protocol is free from deadlocks and nonexecutable transitions, and also that successful message transfer is
guaranteed for a network with an arbitrary number of machines. A program written in an object oriented language, C--,
demonstrates that the description technique, the specification, and the analysis of the protocol is complete and accurate for a
network of three stations. The specification is then extended to allow the transmission of different types of messages, error& in
Ihc communication channel, acknowledgments from the receiver, and timeouts.

20. DISTRIBUTIONAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED [-] SAME AS RPT. [DTIC USERS UNCLASSIFIED
22aGNAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE Include Area Code22c5 OFFCE SYMBOL

G. M. Lundy (408) 646-2094 ~ 52LN
00 FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

AN other editions are obsolete UNCLASSIFIED
i

Approved for public release; distribution is unlimited

A SPECIFICATION AND ANALYSIS
of the

IEEE TOKEN BUS PROTOCOL

by
Lauren J. Chatbonneau

Lieutenant, United States Navy
B.B.A., University of Texas, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
Juie 1990

Author: a 4m t _ _4

Lr en J. Chbabonneau

Approved By: _______________ G.M. Lundy, Thes4.Wior

7 Man-Tak Shing, Second Reader

Robert B. McGhee, Chairman,
Department of Computer Science

ii

Abstract

In this thesis a formal description technique, systems of communicating ma-

chines, is used to specify and analyze a token bus protocol. A simplified description

of the protocol is given, and proofs of certain correctness properties presented. The

analysis proves that the protocol is free from deadlocks and nonexecutable transi-

tions, and also that successful message transfer is guaranteed for a network with

an arbitrary number of machines. A program written in an object oriented lan-

guage, C++, demonstrates that the description technique, the specification, and

the analysis of the protocol is complete and accurate for a network of three sta-

tions. The specification is then extended to allow the transmission of different

types of messages, errors in the communication channel, acknowledgments from

the receiver, and timeouts.

ioeuon Tor /

NTIS GRA&IDTIC TAB
Unannounced 0
Justification

By_

Distribution/ ,

Availability Codes

ailan/o

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A. FORMAL MODELING OF PROTOCOLS .. 1
B . A LO H A .. 3
C. CARRIER SENSE MULTIPLE ACCESS (CSMA) ... 4
D. CARRIER SENSE MULTIPLE ACCESS WITH COLLISION

DETECTION (CSMA/CD) .. 5
E. TOKEN RING .. 7
F. FIBER DISTRIBUTED DATA INTERFACE (FDDI) .. 9
G . TO K EN BU S .. 10

II. SYSTEMS OF COMMUNICATING MACHINES 14

Ill. SPECIFICATION OF A TOKEN BUS PROTOCOL 18

IV. ANALYSIS OF THE PROTOCOL ... 22

V. A WORKING PROGRAM ... 32

VI. EXTENSIONS OF THE PROTOCOL ... 35

VII. SUMMARY ... 41

APPENDIX A (C++ CODE) ... 43

APPENDIX B (SAMPLE get-tk/pass-tk TRACE) .. 65

APPENDIX C (SAMPLE PROGRAM TRACE) .. 73

LIST OF REFERENCES ... 80

INITIAL DISTRIBUTION LIST ... 82

iv

I. INTRODUCTION

A. FORMAL MODELING OF PROTOCOLS

Communication protocols are the parallel algorithms which provide the means for

communication between computers connected in networks. These protocols exist at

every level in computer networks, from the physical level, where strict procedures must

be followed for the correct transfer of signals from one machine to the next, to the

application level, which involves the passing of text messages from a software program

in one machine to another, or the transfer of an electronic mail message. Most of these

protocols are rather complex, involving the synchronization in one form or another of

programs in various autonomous machines. As the nucleus of teleprocessing networks,

protocols are responsible for ensuring that these autonomous machines operate as a

cohesive system. Therefore, the need exists for documentation to be written in such a

way that the details are easily interpretable and unambiguous to all concerned parties.

It is essential that protocols are clearly described, without ambiguity, and that they

function correctly, accomplishing their intended function, without errors.

The importance of a clear description, and of analysis, to show that protocols function

correctly, has led to much research in the past decade. Several methods have been

suggested for formal modeling.

One of the early popular methods modeled protocols with event driven processes

that communicated with each other through message passing. These processes were

represented by finite state machines; thus the term communicating finite state machines,

[4,20]. In fact, each individual machine (station) in the network was described as a

finite state machine, with the communication channels treated as FIFO queues. The

1

dynamics of the system were described in terms of global states and transitions between

those global states. Petri Nets have also been used as a formal method for describing

protocols.

Both of these methods used an analysis technique called reachability analysis, in which

the set of all global states (a composite state, consisting of the state of all machines and

queues in the network) was generated. For large protocols this method proved to be

very cumbersome. Because of the combinatorial explosion in the number of states, some

protocols could not be formally specified and analyzed as a whole entity. Analysis had

to be performed on subsets, if at all.

Another model [3] treated each machine as a process that was described with program

language statements. Specialized programming languages have also been developed. In

recent years much work has been done on two of these languages, LOTOS and Es-

telle [2,11]. In (1], Bochmann combined finite state machines with variables to describe

protocols, uniting some elements of both models. The model utilized here, systems of

communicating machines, carries that work further. It has been formally defined [12],

making a formal analysis possible.

In this thesis, the TOKEN BUS protocol[8] is formally specified and an analysis is

given. The analysis shows that the protocol is free from deadlocks and nonexecutable

transitions, and that the protocol is live, which means that successful data transfer

is guaranteed under the assumptions of the model. The initial specification has some

simplifying assumptions which serve to make the main ideas of both the protocol and

its analysis easily understood. The formal description technique used, called systems of

communicating machines, is powerful enough to give a concise and simple description of

the protocol. It also has an analysis method which is easily understood, called system

state analysis. Thesis workups included a separate system state analysis on the protocol

specification for networks that had as few as two and as many as ten stations. These

lead eventually to a more general proof for an arbitrary number of machines.

2

The token bus protocol is one of three local area network protocols chosen by the

IEEE for standardization; the others are the Carrier Sense Multiple Access with Collision

Detection (CSMA/CD) [7] and the Token Ring [9] protocols. Both have been specified

and analysed in previous work [15,18] using methods similar to those employed here.

Brief descriptions of two well known pre-standardization protocols are now presented.

These are followed by more elaborate descriptions of three standardized local area net-

work protocols. Chapter 2 then defines the formal model, systems of communicating

machines. The specification of the protocol is then given in Chapter 3, and its analysis

is in Chapter 4. Chapter 5 presents a working program written directly from the Chapter

3 specification. It is followed in Chapter 6 with an extension that eliminates some of the

previous simplifications. Finally, the thesis is summarized in Chapter 7.

B. ALOHA

Originating at the University of Hawaii, pure ALOHA was one of the first protocols

to be used to link computers in a network. The basic idea of a pure ALOHA system

was simple: users transmit on a broadcast medium whenever they have traffic to send.

Collisions and lost messages will occur when two or more messages from two or more

stations try to occupy the medium at the same time. When this occurs the transmitting

stations simply wait a random period of time and transmit again. It is important to

realize that if the first bit of a new message overlaps with the last bit of a message

that is almost finished, both will become unintelligible and have to be retransmitted

later. Both transmitting station's messages have now been delayed. Through previous

research that assumed a Poisson arrival rate, it has been determined that in a network

where each station is equally likely to begin transmitting at any time, the best possible

channel utilization is approximately 18 percent [22].

Even if time is divided into discrete intervals and stations are only permitted to

begin transmitting at the beginning of a time slot, the best utilization possible is 36

3

percent [22]. This slotted ALOHA scheme doubles the utilization of pure ALOHA but

still leaves much to be desired. Another disadvantage is that there is no provision for

different priority messages.

These types of access methods are best suited to LANs with very low levels of traf-

fic or to network situations where a single (or very few) transmitting stations need to

communicate with many other stations that predominantly listen. This is not the case

in most LANs of today.

C. CARRIER SENSE MULTIPLE ACCESS (CSMA)

CSMA protocols require stations with traffic to listen to the communication medium

to determine if any other station is transmitting before it begins transmitting its mes-

sages. If the medium is busy, the station waits (with varying degrees of persistence) until

it becomes idle before transmitting. If a collision occurs, all transmitting stations wait

a random period of time and start all over again.

Not considering propogation delay, collisions will always occur when two or more

stations become ready in the middle of a third station's transmission. Both will wait

politely until the transmission ends and then begin transmitting simultaneously, result-

ing in a collision. This 1-persistent CSMA scheme continually senses the medium and

transmits with 100 percent probability when the medium becomes quiet. Variations on

this include:

non-persistent CSMA - where upon sensing a busy medium, the protocol waits a

random period of time before even sensing the medium again.

p-persistent CSMA - where upon sensing an idle medium, the protocol transmits

with probability p or defers transmitting with probability q, where (q = 1 - p). This

method applies a sophisticated probability scheme that 'acts', with probability q, as if

collisions have occurred. The effect is a reduction in the number of real collisions and

subsequent delays throughout the network.

4

1.0 0.01 persistent CSMA

0.9-

0.8, Nonpersisen CSMA

0.7

0.6 o. I -persistent CSMA

S 0.5

0.4

0.3Slott

0.2 ALOHA -persistent CSMA 0.5-persistent CSMA

0.1 Pure ALOHA

0 ,, * . -I
°0

0 1 2 3 4 5 6 7 8 9
G

Figure 1: Comparison of Channel Utilization vs Load [22]

Figure 1 describes the throughput of all of the protocols mentioned so far. It is easy

to see that the CSMA protocols are far better in terms of throughput than pure ALOHA

because ready-to-transmit stations do not interfere with the station transmitting at the

time they become ready. Intuitively, CSMA protocols provide higher performance than

either pure or slotted ALOHA. However, delays can be considerable because transmitting

stations always finish transmitting their messages even after a collision has been heard on

the network. Useful bandwidth is lost finishing message transmissions that are known to

be unintelligible. As with Aloha protocols, there is no provision for messages of different

priority.

D. ANSI/IEEE STD 802.3 CARRIER SENSE MULTIPLE
ACCESS WITH COLLISION DETECTION (CSMA/CD)

The IEEE CSMA/CD standard access method is an extension of the above mentioned

CSMA. Like CSMA, it is a means by which two or more, (usually many more), stations

share a passive broadcast transmission medium. It is commonly referred to as Ethernet.

5

This name has as its origin the 19th century hypothesis that luminiferous ether was the

medium through which electromagnetic radiation propogated. This notion was long ago

dispelled; however, the term Ethernet remains.

There is no central control in an Ethernet and access to the medium by stations

needing to transmit is done in a distributed fashion, by the stations themselves, using

the 1-persistent probability arbitration scheme. To transmit, a station waits until the

medium is quiet (i.e., no other stations are transmitting), and then sends its message.

If two or more stations begin transmitting at the same time, a collision will occur and

all messages become unintelligible. If this occurs, all transmitting stations detect the

collision, but unlike CSMA, transmit only a few additional jamming bytes to ensure

propogation of the collision throughout the network. The stations then stop transmitting

(without finishing their messages), wait a random period of time, listen for the medium to

become quiet, and attempt to retransmit the same message again. The scheduling of the

retransmissions is determined by a controlled randomization process called 'truncated

binary exponential backoff'. The algorithms used to generate the random wait time

for autonomous stations are designed to maximize the dispersion between wait times

generated by any two stations at any given time [7].

Ethernets are far and away the most widely used LAN at present, with a huge

installed base and considerable operational experience. The algorithm is simple and

stations can be installed and removed without taking the network down. A passive cable

is used and modems are not required. Furthermore, the delay at low load is practically

zero, because stations do not have to wait for a time slot or token; they just transmit

immediately. Another factor that enhanced the widespread acceptance of Ethernets was

the fact that they were, and still are, inexpensive to implement. Economical network

connections may very well be a more decisive factor than maximum bandwidth utilization

for the propogation of useful data.

6

These types of LANs are best utilized in situations wh, re most messages are over 1000

bytes in length and traffic is bursty and infrequent [22]. They are explicitly designed

to have excess bandwidth, not all of which must be used, and systems operate most

efficiently when engineered to run with a sustained load of less than 50 percent [21].

As a consequence of this, Ethernets will generally provide adequate throughput with

low delay on lightly loaded networks. However, as the load increases, collisions increase,

delays increase, and performance deteriorates rapidly [6,22]. In fact, there is no definitive

upper bound on wait times. It is possible for two or more stations to repeatedly collide for

an extended period of time. Again, there is no provision for different priority messages.

These factors make CSMA/CD inappropriate for real-time systems, or for any network

that has or anticipates high loads of traffic.

A formal specification and analysis of CSMA/CD using systems of communicating

machines [15], has been completed. In that paper, Lundy proved the protocol to be free

of deadlocks, but he also showed that the protocol was not live. That is, there was no

guarantee that data transmission would be successful in a finite period of time.

E. TOKEN RING

The token ring standard access method is one of the first protocols to NOT utilize

broadcast as a means to relay messages from transmitting to receivilig stations. Rather,

it uses a collection of individual point-to-point links that happen to form a closed uni-

directional loop. A station must acquire the token, removing it from the ring, before

it can transmit its messages. Once this occurs, the transmitting station will transmit

its own outgoing message onto the ring. It is important to note that as each bit of this

transmitted message arrives at each downstream station, it is read into a buffer and

then, one bit time later, copied out onto the ring again. This one-bit time delay occurs

at every station (or point) in the ring. The entire message will be relayed in this fash-

ion from point-to-point and eventually return to the sender. The transmitting station

7

now has the responsibility of draining its message from the ring and can transmit more

messages if time constraints permit. Once the token-holding-time window has passed,

the token-holder must regenerate the token message and copy it onto the medium. The

immediate downstream neighbor can now seize it and begin transmitting in exactly the

same manner.

Only the token-holding transmitting station can send traffic. All other stations are

forced to listen for traffic addressed to themselves, repeat bits, and wait for their turn

to have the token and begin transmitting their own messages.

Not considering priority messages, the token ring is fair in the sense that all stations

will, in a round-robin fashion, get their turn to access the medium and transmit. Unlike

any of the previous protocols, it has a deterministic upper bound on channel access time.

This is an attractive feature when compared to CSMA/CD. Because of the way that each

station gets its turn, network throughput and efficiency can approach 100 percent under

conditions of heavy load. It is also inexpensive and easy to install.

A disadvantage of the token ring is that when traffic is light, a station will still have

to wait until it sees the token from its physical upstream neighbor before it can transmit.

This delay will be at least as long as the time it takes for a station to complete the get

token, check buffers, pass token sequence multiplied by n - 1 stations in the ring. Added

to this delay is the n bit times that are induced at each station when the transmitted

frames are repeated throughout the network. Another criticism of token ring LANs is

the fact that a down station anywhere in the loop will bring the whole network down.

Along this same line, the use of a centralized network monitoring station induces network

maintenance problems if that station becomes degraded or inoperative.

The token ring protocol does provide for priority messages but the fairness property

mentioned earlier no longer holds when this feature is implemented. The priority scheme

allows stations with higher priority messages to acquire the token more quickly. Stations

8

with only low priority messages can be prevented from receiving a low priority token and

transmitting their traffic.

A formal specification and analysis on a simplified version of this protocol was accom-

pUshed [17]. This paper showed that the passing of the token, the transmittal of a data

frame, and its receipt and acknowledgement are accomplished by the specification. How-

ever, because of the number of system states involved, (632 for an IEEE standard two

station network[18)), modeling a network of three or more stations was not attempted.

As with CSMA/CD, the specification was formalized using systems of communicating

machines.

F. FIBER DISTRIBUTED DATA INTERFACE (FDDI)

FDDI [19] is an ANSI draft proposed standard for a 100 Mbit fiber-optic token ring

local area network. Because of the recent improvements in light-wave technology, FDDI

can offer much higher data rates than the capacity of the older technology networks.

Like the standard token ring, FDDI uses a collection of individual point-to-point

links that form a closed loop. Stations cooperatively use timers to maintain a specified

target token rotation time (TTRT) by using the observed network load to regulate the

arroulit of time that a station may transmit. This TTRT is adjustable to facilitate the

various requirements associated with different applications.

Every station is guaranteed a minimum token holding time (THT), all of which need

not be used, each time the token is acquired. The traffic transmitted during these token

holding periods is termed synchronous. From a particular station, if the revolving token

returns before its TTRT timer has expired, that station will increase its allowable THT

by the difference of the specified TTRT minus the actual time it took for the token

to complete a loop through the network. The extra, less critical, traffic that can be

transmitted during this interval is called asynchronous. By allowing both synchronous

and asynchronous traffic, stations with heavy loads can transmit longer if there are sta-

9

tions that are not utilizing their full allotment. More efficient utilization of the physical

bandwidth is realized.

It is important to note that there will be asynchronous traffic only if the synchronous

traffic does not use the full target token rotation time in one cycle of the ring. In this

case the TTLT timer will expire at each station before the token is reacquired.

The guarantee that the token will return within a specified time period enables FDDI

to support applications that require guaranteed bandwidth, such as real time control and

voice. In [I0 it is formally proven that the timing requirements inherent in FDDI are

satisfied when all components are functioning properly.

FDDI is expected to be the follow-on network to the current 802 LANs [19]. Other

factors besides the aforementioned speed advantage are security, immunity to electro-

magnetic interference, and reduced weight and size. Optical fiber does not adapt well to

bus configurations, hence the similarity to the token ring topology. Another advantage

of FDDI is that its speed can allow it to be used as a backbone for bridges to a variety

of other lower-speed LANs or as gateways to public data networks.

A formal specification and analysis of the protocol using systems of communicating

machines was recently accomplished [14]. FDDI was analyzed for correctness properties

and proof was given that it is free of deadlocks.

G. TOKEN BUS

The token bus protocol is a combination of both the CSMA/CD and token ring pro-

tocols. All stations on the network are connected by a single bus which, like CSMA/CD,

functions as a broadcast medium. Physically the bus is a cable which propagates the

signals transmitted by the stations throughout its entire length (see Figure 2). Any sta,

tion may transmit bits onto the bus, and these bits will propagate to every other station

on the network. However, only one station may transmit at a time; otherwise the signals

10

Figure 2: Topology of a Token Bus Network

would interfere, causing a collision. To ensure that a network has only one transmitting

station, the protocol functions like the token ring and relays a token.

The token, which is carried as a unique message, is passed logically from station to

station; only one token exists on the network, and only the station possessing it may

transmit. Thus, access to the bus is limited to one station, so collisions are prevented.

Like the token ring, a small per.:entage of the useful bandwidth is utilized for token

passing and management, but none is required for collision detection and resolution.

If a station wishes to transmit a message to another station, it must wait until

receiving the token. Upon receiving the token, it transmits the message, or frame,

and then passes the token on to the next station. The stations on the network are

ordered, so that each has an "upstream neighbor," from which the token is received, and

11

a "downstream neighbor," to which the token is passed. This ordering forms a cycle, so

that the token periodically returns to each station.

In order to keep one station from taking control of the network (i.e., holding onto

the token indefinitely), a limit must be placed on the token holding time. This can be

implemented with a timer, or by limiting the number of frames a station may transmit

before giving up the token.

The major advantage the token bus protocol has over the CSMA/CD protocol is that

no time is lost due to collisions. This results in much better throughput under heavy

loads. There is a deterministic upper bound on the time any station may have to wait

to acquire the token and transmit a frame. This upper bound is essentially the product

of the number of stations and the maximum token holding time. As previously noted,

with CSMA/CD there is no such upper bound. In [5,6], comparisons of the two were

shown based on simulation studies; similar results were reported.

Another advantage is the availability of four priority classes for outgoing message

queues. When a station obtains the token, the highest priority queue immediately trans-

mits its frames. If this queue empties and the station has not reached its maximum

token holding time, the next highest priority queue will transmit its frames. It is easy

to see that control cascades down the priority list until either the token holding sta-

tion has transmitted all of its messages from all of its queues or the token holding time

constraint has been met and the station passes the token to its neighbor. Some of the

lower priority messages may remain where they are. The next pass of the token into

this station starts with the highest priority messages again. Low priority messages will

remain untransmitted until all higher priority messages from all higher priority queues

have gone.

The highest priority queues at each station in a token bus network could be used to

implement voice or other real time traffic [22]. This priority scheme can be implemented

to guarantee a known fraction of the network bandwidth to the messages in the highest

12

priority queues. Because of its similarity in topology to Ethernets, any CSMA/CD

Ethernet could quickly be converted to a much more efficient (at times of heavy load),

real time capable token bus network.

The disadvantage of the token bus protocol, in comparison with CSMA/CD, is its

increased overhead and complexity. Logical ring maintenance and token management

are not trivial matters. Issues to be dealt with include loss of the token, duplicate tokens,

and reestablishment of the logical ring after a station comes on-line or goes down. These

issues are topics for future specification and analysis.

Advantages of the token bus over the token ring network are the simplicity of the

topology and the above mentioned real time capable priority scheme. The token ring

topology, however, seems more easily adapted to networks, such as FDDI, that utilize

the increased performance of optical fiber technology.

13

II. SYSTEMS OF
COMMUNICATING

MACHINES
The formal description technique Systems of Communicating Machines [12], designed

for the specification and analysis of communication protocols, uses a combination of finite

state machines and variables to model a communication network. The communication

between machines is accomplished through shared variables. Each machine also has local

variables which may be used for various purposes, such as storing data blocks or for

counters. Enabling predicates and actions are associated with each state transition; the

enabling predicates determine when a transition may be taken, and the actions alter

the variable values as the communication in the network progresses. The major method

of analysis used with this model is called system state analysis. This is similar to the

reachability analysis which has been used with other protocol models - especially the

communicating finite state machine (CFSM) model - but provides an often significant

reduction in the analysis. (See, for example, [16]). Other methods of analysis have also

been used with this model; in [15], a proof method was used, which grouped sets of states

together into classes.

Formally, a system of communicating machines is an ordered pair C = (M, V), where

M = (MIM2 mn}

is a finite set of machines, and

V = {VIV2,...,Vk)

is a finite set of shared variables, with two designated subsets Ri and Wi specified for

each machine mi. The subset Ri of V is called the set of read access variables for machine

mi, and the subset Wi the set of write access variables for mi.

14

Each machine mi c M is defined by a tuple (Si,s, Li, Ni, ri), where

(1) Si is a finite set of states;
(2) s c Si is a designated state called the initial state of mi;
(3) Li is a finite set of local variables;
(4) Ni is a finite set of names, each of which is associated with a unique

pair (p,a), where p is a predicate on the variables of Li U Ri, and a is an
action on the variables of Li U Ri U Wi. Specifically, an action is a partial
function

a: Li x R - Li x Wi

from the values contained in the local variables and read access variables to
the values of the local variables and write access variables.

(5) ri : Si x Ni -+ Si is a transition function, which is a partial function
from the states and names of mi to the states of mi.

Machines model the entities, which in a protocol system are processes and channels.

The shared variables are the means of communication between the machines. Intuitively,

Ri and Wi are the subsets of V to which mi has read and write access, respectively. A

machine is allowed to make a transition from one state to another when the predicate

associated with the name for that transition is true. Upon taking the transition, the

action associated with that name is executed. The action changes the values of local

and/or shared variables, thus allowing other predicates to become true.

The set Li of local variables specifies a name and a range for each. The range must

be a finite or countable set of values.

A system state tuple is a tuple of all machine states. That is, if (M,V) is a system

of n communicating machines, and s, for 1 < i < n, is the state of machine mi, then

the n-tuple (81,82,... , S) is the system state tuple of (M,V). A system state is a system

state tuple, plus the outgoing transitions which are enabled. That is, two system states

are equivalent if every machine is in the same state, and the same outgoing transitions

are enabled. The initial system state is the system state such that every machine is in

its initial state, and the outgoing transitions are the same as in the initial global state.

The global state of a system consists of the system state, plus the values of all vari-

ables, both local and shared. It may be written as a larger tuple, combining the system

15

state with the values of the variables. The initial global state is the initial system state,

with the additional requirement that all variables have their initial values. A global

state corresponds to a system state if every machine is in the same state, and the same

outgoing transitions are enabled. That is, a global state consists of a tuple of machine

states, plus the values of all variables. A system state with the same tuple of machine

states and the same enabled outgoing transitions is the corresponding system state.

Let r(sl, n) = 82 be a transition which is defined on machine mi. Transition T is

enabled if the enabling predicate p, associated with name n, is true. Transition r may be

executed whenever mi is in state s, and the predicate p is true (enabled). The execution

of r is an atomic action, in which both the state change and the action a associated with

n occur simultaneously.

Note that if the values of all variables are restricted to some finite range, then the

model can theoretically be reduced to a simple finite state machine. Otherwise, an

infinite number of global states are possible. However, even if the number of global

states is infinite, the number of system states is finite, because of the finiteness of each

machine. This may allow a reachability analysis on the system states, when a reachability

analysis on the global states is infinite. Even when the values of all variables are of a

finite range, the number of global states in the equivalent FSM system may be so large

as to be intractable.

Another advantage this model has over most other description techniques is in the

modeling of communication channels. First, these are modeled through shared variables,

which gives more flexibility than pure FIFO queues. Secondly, simultaneous transitions

are allowed by the definition (unlike, for example, the CFSM model). These two advan-

tages allow us to reasonably model local area networks using a bus as a communication

medium. In [15], the CSMA/CD network was modeled, to include collisions. In (17] this

model was used to specify and partially analyze the token ring protocol, and a complete

system state reachability analysis for two machines was given in [18]. Work in conjunc-

16

tion with this thesis provided a complete system state analysis for a two machine token

bus network [13]. Again, the systems of communicating machines model was utilized.

Recent work is concentrating on the modeling of fiber optic networks, such as FDDI [14].

In this thesis, a shared variable, called MEDIUM, is used to model the common bus,

which is the transmission medium. While this is an abstraction from the physical cable,

it is felt that the use of a shared variable is a reasonable one, which allows for a realistic

specification of the protocol. Obviously some abstraction is necessary and desirable.

The IEEE Standard 802.4 describes the token bus protocol. That standard uses a

combination of finite state machines and the programming language Ada; however the

model in this paper is precisely defined, and the communication channels are modeled

by shared variables.

17

III. SPECIFICATION OF A
TOKEN BUS PROTOCOL

This specification is a simplified one. It assumes that the transmission medium is

error free and that all transmitted messages are received intact. The intent here is to

portray the ideas of the protocol and to introduce the methodology of specification using

systems of communicating machines. An extension that includes transmission of different

types of data messages, acknowledgments, timeouts, and errors on the medium appears

later in Chapter 6.

The specification of this simplified network consists of a specification for each ma-

chine, given in Figure 3 and Table 1, and the shared variable MEDIUM, also shown in

Figure 3. This single shared variable, MEDIUM, is used to model the bus, which is

"shared" by each machine. A transmission onto the bus is modeled by a write into the

shared variable. The fields of this variable correspond to the parts of the transmitted

message: the first field, MEDIUM.t, takes the values T or D, which indicate whether the

frame is a token or a data frame. The second field contains the address of the station

to which the message is transmitted (DA for "destination address"); the next field, the

originator (SA for "source address"); and finally the data block itself.

The network stations, or machines, are defined by a finite state machine, a set of

local variables, and a predicate-action table. The initial state of each machine is state

0, and the shared variable is initially set to contain the token with the address of one of

the stations in the "DA" field.

The value of local variable next is the address of the next or downstream neighbor,

and these are initialized so that the entire network forms a cycle, or logical ring.

The local variable i is used to store the station's own address. As implied by their

names, the local variables inbuf and outbuf are used for storing data blocks to be

18

transmitted to or received from other machines on the network. The latter of these,

outbuf, is an array and thus can store a potentially large number of data blocks. The

variable ctr serves to count the number of blocks sent; it is an upper bound on the

number of blocks which can be sent during a single token holding period. The local

variable j is a pointer into the array outbuf.

The initial state of each machine is state 0, and local variables j and ctr are initially

set to 1, and inbuf and outbuf are initially set to empty. The shared variable MEDIUM

initially contains the token, with the address of one station in the DA field. Thus the

initial system state tuple is (0,0,..,0) and the first transition taken will be get-tk by the

station which has its local variable i equal to MEDIUM.DA.

Each machine has four states. In the initial state, 0, the station is quiescent, merely

waiting to either receive a message from another station, or the token. If the token

appears in the variable MEDIUM with the station's own address, the transition to state

2 is taken. When taking the get-tk transition, the machine clears the communication

medium and sets the message counter ctr to t. In state 2, the station transmits any data

blocks it has, moving to state 3, or passes the token, returning to state 0. In state 3, the

station will return to state 2 if any additional blocks are to be sent, until the maximum

count k is reached. When the count is reached, or when all the station's messages have

been sent, the station returns to state 0.

The receiving station, as with all stations not in possession of the token, will be in

state 0. The message will appear in MEDIUM, with the receiving station's address

in the DA field. The receiving transition to state 1 will then be taken, the data block

copied, and the MEDIUM cleared. By clearing the medium, the receiving station

enables the sending station to return to its initial state (0) or to its sending state (2).

The reader may verify these transitions by examining the state diagram and the

predicate-action table. The symbol "E" indicates that the variable should be incre-

mented unless its maximum value has been reached, in which case it should be reset to

19

MEDIM It IDA ISA Idata
MEDIUM

ready

0 rev L6 i : (my address)

asget-tk next : (address of next station)

2 Xmit 3 etr: (1,2, .. ,k + 1)

j :(1,2,.., k)
moreD

PA S;A data t DA SA data

inbuf OutbufJ....L..........

Figure 3: Specification of the Network Nodes

20

transition predicate action
rcv MEDIUM.(t, DA) = (D,i) inbuf 4-- MEDIUM.(SA, data)
ready true MEDIUM +- 0

get-tk MEDIUM.(t,DA) = (T,i) MEDIUM -- 0; ctr +- 1
pass outbuf[j] = 0 MEDIUM ,- (T, next, i, 0)
Xmit outbuf[j] 0 MEDIUM - outbuf[j]; ctr - ctr e 1;

______~~~ __ _ _ _ _ _ _ _ i ie1
moreD MEDIUM = 0 A outbufUj] # 0 ---

A ctr < k
pass-tk MEDIUM = 0 A MEDIUM - (T, next, i,O)

(outbuf[j] = 0 V ctr = k + 1)

Table 1: Predicate-Action Table for the Network Nodes

the initial value. The symbols "V" and "A" indicate the logical OR and logical AND

operations, respectively. The notation MEDIUM.(1, DA) is used to denote the first two

fields of the variable MEDIUM. For example, MEDIUM.(t, DA) = (T, i) is a boolean

expression which is true if and only if the first field of MEDIUM contains the value T,

and the second field contains the value i (see the get-tk transition).

Some observations concerning this simplified specification are in order. As previously

mentioned, the channel is assumed to be error free. This means that the clearing of the

medium by the receiver may be taken as an acknowledgement by the sender. There is

thus no need for error checking on the channel (such as the Frame Check Sequence); this

field was left out of the initial specification. This also means there is no need for timers

and timeouts. In Chapter 6, we show how to relax some of these assumptions. However,

this specification does contain the main idea of the token bus protocol, and analysis for

the logical behavior of the machines can be performed. The following chapter contains

this analysis.

21

IV. ANALYSIS OF THE
PROTOCOL

There are at least two major types of analysis which are carried out on communica-

tion protocols; one is commonly referred to as performance analysis, the other as formal

modeling of protocols. In performance analysis, the protocol is given, and some assump-

tions are made concerning the "inputs" to the protocol system - for instance, the mean

and probability distribution of the arrival of packets - and the task is to determine how

well the protocol performs, in some sense. One example is to determine the maximum

throughput of the protocol. The modeling tools which are used axe generally taken from

probability and queueing theory.

The formal modeling of protocols is concerned with the design of the protocol, its

proper specification, with its analysis for freedom from errors and functional correct-

ness, and with implementation and testing. The analysis tends to be exact rather than

probabilistic, so the modeling tools used in this analysis are similar to those used in the

analysis of algorithms in computer science. Some examples are finite state machines,

Petri nets, and programming language models.

The analysis in this thesis is of the second type. From the formal specification of the

previous section, certain safety and liveness properties concerning the token bus protocol

are derived.

One of the methods of analysis with this protocol model, systems of communicating

machines, is called system state analysis [12]. In Figure 4, the system state analysis of

the token bus protocol is given for two machines. The two element tuple, (0,0), in the

upper left hand corner of Figure 4 is the initial system state. It indicates that station

1 (the left element) is in state 0, as is station 2 (the right element). The other initial

condition is that MEDIUM contains a token message with highest numbered station in

22

the network being the DA. Notice that the only path from (0,0) is a get-tk transition.

When this occurs, station 2 moves to state 2 and the system moves to system state

(0,2). The methodology of this system state analysis then is to continue to transition, in

accordance with Table 1, on each of the out arcs as they are reached, utilizing a separate

finite state machine for each station and a global entity as the MEDIUM. The result of

each of these transitions will be a new system state tuple. The idea is to ensure that every

system state is reachable and that there are no system states in which a station or the

system can not transition out of. The analysis of Figure 4 does show that for a network

of two machines, the protocol is free from deadlocks and nonexecutable transitions.

The analysis of Figure 5 shows that for a network of three machines the protocol is also

free from deadlocks and nonexecutable transitions. Note that the additional complexity

is minimal when incrementing the number of machines. Although not included here,

thesis workups included system state analysis of networks of up to ten machines.

However, in order to analyze an arbitrary number of machines, a more general proof

is necessary. The following proofs are a generalization of the system state analysis to an

arbitrary number of machines.

First, it is shown that the protocol possesses the most basic safety property, freedom

from deadlocks. In order to do so, we must show that the network must always continue

to move from one state to the next, for all possible reachable states. We show first that

the token will be passed indefinitely by non-transmitting stations (Lemma 1). Then it

is shown that a station with data will also pass the token (Lemma 2). Then these are

combined to show freedom from deadlocks, in Theorem 1. Lemma 3 gives the number

of states in a system state analysis for the protocol.

23

pass pass-tk

(0 0)

fget-tk
- moreD

(02) Xit (0,3 rcv ready 03)

(00) pass-tk

get-tk

Xmit rev ready-(2,0) 'Xit (3,0) -rcv (3,1) -"(3.,0)-

t moreD I

Figure 4: System State Analysis: Two Machine Network

24

Lemma 1 From the initial system state, if no station has data messages to transmit,
the token will be passed from station to station, returning to the initial system state in
ezactly 2n transitions.

proof. Initially each machine is in state 0, and the shared variable MEDIUM

contains the token addressed to some station i; that is,

MEDIUM.(t, DA) = (Ti).

The get-tk transition will thus be enabled in station i, and no other transition in any

other machine will be enabled; so this transition will be taken, moving station i to state

2. Since station i has no messages to send, we have inbuf U] = 0; so the next transition

to occur is the pass, returning station i to state 0, and placing the token into MEDIUM

with the next station, the address of which is in local variable next, as the destination.

An identical sequence of events will then occur in the next station, and the next,

until the token returns to station i. Since there are exactly n stations on the network,

and each station executes exactly two transitions, a total of 2n transitions are executed

before the token returns to station i. 0

25

Lemma 2 If any station with 1 < m < k messages to transmit acquires the token, this
station will transmit all m messages and pass the token on to the next station on the
logical ring.

proof. Assume that station i is in state 2 (having acquired the token) and all other

stations are in state 0. Since the station has at least one message to transmit, we

have outbuf[j] ? 0. Thus the Xmit transition is enabled, and no other transitions are

enabled, so station i must move to state 3, while all other stations remain in state 0. This

action writes the contents of the input buffer into MEDIUM, with some station, say

1, as the destination. From state 3, sending station i now has no action enabled (since

MEDIUM 6 0). The station to whom the message was addressed, station 1, may now

take the rcv transition to state 1. Next, station I takes the ready transition back to

state 0, which clears MEDIUM, enabling station i to take either the pass-tk or more-D

transition. Either outbuf U] = 0 is true or false. (Observe that j was incremented by the

Xmit action). If true, the pass-tk transition is enabled, and the station writes the token

into MEDIUM, completing the proof.

If outbuf U] 6 0, the more-D transition is taken, and machine i returns to state

2. From this state, the same sequence of transitions will be taken, which transfers the

next data block to its receiver. This sequence will be repeated until all data blocks are

transmitted, indicated when ctr reaches the value k, or when the next buffer is empty,

indicated by outbuf U] = 0, at which time the pass-tk transition will be taken. 0

26

-(0,00 pass-tk

get-tk

(002-Xmit r00,) v0
p r~cv (,1,3)(0,0,ea)

smoreDre

(0,G,0) ast

a
S
S get.-tk

(0,20, t (0,3,0) (0,30

smoreDrc (031 red

(0, 00 pass-tk

get-tk

-(2,0,0) mt(3,0 ,0) (3,0,0)

moreD rV (,, -- ready

Figure 5: Extended System State Analysis: Three Machine Network

27

Lemma 3 The system state reachability analysis for the token bus protocol as specified
has n(n + 3) system states.

proof. One complete pass of the token around the logical ring generates 2n states.

For exactly n of these, one station is in possession of the token, and may transmit. From

each of these n states, the Xmit transition leads to one more state. This station may

transmit to any of the other (n - 1) stations, which then receives the data frame. This

receiving transition adds (n - 1) more states. The ready transition then leads to one

more state. Thus, for each of the n transmit states, there are 1 + (n - 1) + 1 = (n + 1)

states. Thus there are a total of 2n + n(n + 1) = n(n + 3) system states. 0

Note the three machine network (n = 3) of Figure 5. A simple count of the system

states shows that this lemma holds. When n = 3, n(n + 3) = 18. Returning to Figure 4,

it can be seen that the property holds for the two machine network as well. In fact the

property holds for an arbitrary number of machines.

28

Theorem 1 (Safety) The token bus protocol as specified is free from deadlocks.

proof. It suffices to show that if the network is in the initial system state,

(0,0,...,0)

then it will eventually leave this state and return to this state in a finite number of

transitions.

Without loss of generality, assume that there are n stations on the network, that

their addresses are 1,2,...,n, and that the value of next for station i is i - 1, excepting

station 1, for which next = n.

In the initial state, the value of the shared variable MEDIUM is (T, i, p, 0) for some

network node i. Since i is in state 0, the get-tk is enabled, and by fairness will eventually

occur; thus the system has left the initial system state.

If station i has no data to send, it will pass the token on to the next station, by

Lemma 1; and, similarly, each station without data will pass the token, until the first

station with data to send, say station 1, receives the token.

Station 1, having data to send, will send the data and then pass on the token to the

next station, by Lemma 2.

Next, station l's downstream neighbor (the address in local variable next of 1) will

receive the token and (1) pass it on to the next station, if it has no data to send (Lemma

1), or (2) send the data and then pass the token (Lemma 2).

Thus the token will be passed on from one station to the next, and eventually returns

to station i, at which point the system has returned to its initial state. 0

29

Corollary 1 The token bus protocol as specified is free from nonezeentable transitions.

The proof of the corollary is contained in the proofs of Lemmas I and 2, and Theorem

1. The reader may verify this by listing each transition which is a part of the protocol

specification, and noting that at some point in the proofs each transition is enabled, and

may thus be executed. 3

Freedom from deadlocks is the most basic safety property. A deadlock occurs when

all machines in the system reach a state in which no further progress is possible. A

nonexecutable transition does not necessarily lead to an error in the execution of the

protocol; it is simply a transition which can never be executed. However, since transitions

are put into a specification for some purpose, the existence of a nonexecutable transition

may be considered to be a design error.

Liveness is another important property. Liveness in a network, in contrast to not

being deadlocked, means that real progress is being made as transitions occur and tokens

and messages propogate throughout the network. Not being deadlocked is one thing,

but being live is considerably different. The next theorem proves liveness in the specified

token bus protocol.

30

Theorem 2 (Liveness) For a network of 2 :5 n stations, any message in the variable
outbuf of station i which has j as the destination address (DA), i 0 j and 1 < i,j :5 n,
will eventually appear in the variable inbuf of station j.

proof. Suppose that station i has a message to send to station 1, i 5 1. Then the DA

field of outbuflj] has the value 1. Eventually by Theorem 1, i will get the token, passing

to state 2. From state 2, the transition Xmit is enabled, leading station i to state 3, and

copying the contents of outbuf U] into MEDIUM. In state 3, station i is now blocked.

Station l, however, now has the rcv transition enabled as MEDIUM.DA = I. Taking

this transition, the value of MEDIUM is copied into the local variable inbuf of station

1.0

The proof of the liveness property means that any station on the network with data

to send to another station will eventually acquire the token and successfully transmit

the data to its receiver. Freedom from deadlocks means that the network will not halt.

31

V. A WORKING PROGRAM
A desire to demonstrate the completeness of the Chapter 3 specification and the

accuracy of the Chapter 4 analysis led to the writing of a program, "tkbus.C", that is

included as APPENDIX A to this thesis. It was written in an object-oriented language,

C++, and is the driver for a simplified token bus network of three independent stations.

More stations could easily be added to the program, but it was determined that the

functionality required for a demonstration was adequately provided by three stations.

During the implementation, as many as six stations were tested, but having more than

three stations proved to introduce no new problems other than bulk and clutter. Thus,

the program in Appendix A drives three stations in a simulated token bus network as

specified in Chapter 3.

Each independent station is modeled as an independent finite state machine object.

A separate C++ header file sets up the structures and executes the transitions for the

four-state finite state machine seen in Figure 3. Note that each header file constructs

a separate four-state finite state machine object. The self-explanatory names of these

included header files are "tkbus-stal.h", "tkbus-sta2.h", and "tkbus-sta3.h".

First, within each station header file, external links are made to the shared fields

of MEDIUM which are defined and declared in the main program, "tkbus.C". Then a

parent structure is set up to provide the variables local to the four states of this machine

only. These local variables can also be seen in Figure 3. Next, member functions provide

all the outgoing arc pointers. These pointers correspond to the paths that are followed

when a transition moves a machine from one state to another.

The functionality of each finite state machine, as specified in the Predicate-Action

Table for Network Nodes (Table 1), is then provided by the last four member functions

in the file. Comments, such as, /* get-tk */ and /* Xmit */ , are positioned to highlight

32

where the transition logic resides. Note the predicates which must be met and the actions

to be taken when the predicates are true. All station's header files were commented

identically for conciseness. The comments should provide assistance to readers unfamiliar

with C or C++ code.

Having set the stage with three autonomous machines, all initialized to state 0,

main() of "tkbus.C" is now set to drive the network. Other initialization values show

the token holding time (THT) is set to a predetermined maximum number of messages

that a station can transmit each time it possesses the token, and MEDIUM contains

a token message addressed to the highest numbered station in the network; in this

case, MEDIUM.DA = 3. The initial transition is now taken. This is get-tk at station 3.

Because MEDIUM.t = T and MEDIUM.DA = 3, station 3's machine has the one and only

enabled predicate. Therefore, it is the only station that can transition. Now that station

3 has transitioned to state 2 and it has the token, it can Xmit a message. This is done by

writing a message from outbuf into the fields of the shared variable, MEDIUM. Station

3 has now transitioned to state 3. Note that only station 3 has satisfied any predicates

and taken action up to this point. But now station 3 is prevented from continuing. Only

the station that corresponds to the value written in MEDIUM.DA can transition. This

station will meet the predicate for a rcv transition to state 1, immediately become ready,

clear the MEDIUM, and transition back to state 0. Now that the MEDIUM is clear,

station 3 can continue to transmit up to the maximum THT or pass-tk; whatever the

case may be. All station's machines transition in the same manner. The token passes

to all stations and the above sequence, with different transmitting stations and different

receiving stations, will continue until the program is terminated.

Not discounting the THT, which is a limiting factor that keeps the token moving from

station to station, it is important to note that the driving factors of the specification,

the program, and the protocol in general, are quite simple. They are; the presence or

absence of a value in the MEDIUM fields, or the presence or absence of a message in

33

each station's outbuf when it has the token. All Table 1 predicates, (if statements in the

program), are based on this simple observation.

When outbuf = 0 at all stations, (all station's outbufs are empty), the program's

behaviour reinforces the statements of Lemma 1. A trace of this execution is included

as APPENDIX B. When the outbufs of various stations are set to various values that

indicate different amounts of messages available for transmission at different stations,

(a realistic network situation), the program's behaviour reinforces the statements of

Lemma 2, Theorem 1, Theorem 2, and Corollary 1. A trace of this realistic execution of

the "tkbus.C" program is included as APPENDIX C. It is easy to see from this trace, all

of the transitions that occurred and the order in which they occurred. (All transitions

start on the left margin). Also shown is the contents of the MEDIUM throughout the

execution.

In summary, the program "tkbus.C" and its included header files do reinforce the

validity of Chapter 3 and Chapter 4 of this thesis. A similar program could be used to

simulate and test a larger subset, or even the entire token bus protocol, as specified in

the IEEE 802.4 Standard.

34

VI. EXTENSIONS OF THE
PROTOCOL

In the specification of Chapter 3, several simplifying assumptions were made. The

most critical of these was that the communication channel, represented by the shared

variable MEDIUM, was error free. As a result, no provision was made for acknowledg-

ments or timeouts. In this chapter we show how to remove some of these restrictions.

The token bus protocol allows only one station to access the channel, the machine

in possession of the token. Strict adherence to this rule means that a station receiving a

message is unable to access the channel for the purpose of sending an acknowledgment,

until the token has been passed to it. This means that the sending station must give up

the token in order to learn whether its message was received; then, if the message was

not received, the sender must again wait until receiving the token before retransmitting

the message.

The solution to this problem is simple. After sending a message, the sender allows

the receiver to access the channel for the explicit purpose of acknowledgment only, before

passing the token or sending any further messages. This is accomplished in the 802.4

Standard by having the token holder transmit a "request with response" data frame.

This type of data frame signals a receiving station to immediately respond with an

acknowledgment upon receipt of the message. If no acknowledgment is received within

a specified time, the sender assumes that the message was not properly received and

retransmits that message.

-This acknowledgment provision has been added, and the resulting specification is

shown in Figure 6. One new state and four new transitions are presented, along with

modied versions of the shared variable MEDIUM and the local variables inbuf and

outbuf. The FC (frame control) field of these variables is an expanded specification of

35

rec-NRR FC DA SA data

FC DA SA data

0 -ackinbuf

pass tkFC DA SA data

2 Xmit-RR 3 +ack 4

timeout

moreD

Figure 6: Extended Specification

transition predicate action
get-tk MEDIUM.(FC, DA) = (T, i) MEDIUM ~ ;ctr I-
pass outbufUj] = V ctr =max+1 MEDIUM ~-(T, next, i,O)
Xmit-NRR out buf [] 9 0 A ctr <max A MEDIUM ~-out buffj 1;

________outbuf[j].FC = NRR ctr +- ctr + 1; j +- j ED 1
Xmit-RR outbuf U] #6 0 A ctr < max A MEDIUM *-- out buf U];

_________outbuffjj.FC = RR set-timer; cit 4-- ctr + 1
rcv-NRR MED TUM.(FC, DA) = (NRR, i) inbuf - MEDIUM
rcv-RR MEDIUM.(FC, DA) = (RR, i) inbuf -- MEDIUM
-ack TRUE MEDIUM 4- (A,inbuf.SA,i,0)
+ack MEDIUM.(FC, DA) = (A, i) MEDIUM 0; j 4- j (D 1
moreD outbuf U] 760 A cir <max_________
pass-tk outbufUjJ = 0 V dtr = max+ 1 MEDIUM (T, next, i,0)
timeout (timer expires) MEDIUM -- 0

Table 2: Revised Predicate-Action Table

36

the earlier t field. It indicates what type of message is on the MEDIUM or what

type of message is buffered. The Xmit and rcv transitions have been split to provide

for transmitting data frames with no response required. Xmit-NRR covers transmitting

with no response required. For transmitting data frames that require a response, the

Xmit-RR transition is taken. This is similar to the previous Xmit transition, however, the

action of Xmit-RR includes setting the timeout timer. The rcv transition has been split

into the rcv-NRR for no response required, and for receiving frames where a response

is required the rcv-RR transition is used. The FC field of MEDIUM and both buffers

takes NRR and RR as values.

The ready transition has been modified and renamed -ack (send acknowledgment).

It is enabled only in state 1, which is reached only when the FC field of the transmitted

message indicates the sender of the message requests a response. When this is true, the

receiver causes MEDIUM to become an acknowledgment message and MEDIUM.FC

becomes A. The fourth value that FC can take on is T for token, (this is identical to the

previous specification).

The last modification is strictly a cosmetic one. The word max replaces the letter k

from Chapter 3. It is more inherently descriptive and indicates the maximum number

of messages that can be transmitted during a single token holding time.

Summarizing the changes, upon taking the Xmit-RR transition, the sending machine

sets a timer. In state 3, the sender waits until receiving either the acknowledgment, or

a timeout. Because the FC field of the data frame indicates that a response is required,

the receiving station will transition to state 1 and copy MEDIUM into its inbuf. An

acknowledgment data frame is then placed on the MEDIUM by the receiver and the

transition back to state 0 is taken. Upon receiving this acknowledgment, the sender

transitions to state 4. (This is equivalent to state 3 of the previous specification). If a

timeout is received, the transmitting station returns to state 2 and resends the message.

If an outgoing data frame does not require a response, the sender's Xmit-NRR transition

37

will be taken. Since no response is required this station will immediately transition to

state 4. The receiving station will interpret no response required, take the rec-NRR

transition, and loop back into state 0. All changes to transition predicates and actions

are presented in Table 2.

The system state reachability analysis for this extension has been carried out, and

has n(n + 4) system states. This is derived in the same manner as Lemma 3 of the

previous specification but provides for the additional state that must be implemented in

each machine. In lieu of a formal proof, it is sufficient to discuss this in the following

way. There are five transitions for each of the n machines that result in a single system

state. These are get-tk, pass, Xmit, -ack, and +ack. Therefore, in a network of n stations

there will be 5n states resulting from these transitions. All that remains to quantify is

the rcv transition which splits to n - 1 receiving stations. In a network of n stations

then, there will be n(n - 1) transitions resulting from these rcv transitions. Combining

the terms results in the following:

5n +n(n- 1)= n(5+ n- 1) = n(n + 4)

As with the previous specification, this property will hold for an arbitrary number

of machines. An extended system state analysis for a three station network is shown in

Figure 7. Note that there are n(n + 4) = 21 system states. The analysis shows that this

extended protocol is also free from deadlocks.

In order to cause errors to occur in the communication channel, another machine,

called demon could be added to the network. This machine would only have one state

and one transition. The single transition would clear the MEDIUM to "empty" from

time to time.

38

(0, 00 pass-tk

get-tk

rcv (01,) -ack

a
s oe
S

p (0,00) pass-tk

a get-tk

a e-

(0,0,0) (03,)(030) -- 40

timeout I ak oe

Fiue7 Exene Syte State1 Ana is he e ahn ewr

a3

That is, let the transition name be delete. The enabling predicate for delete is

MEDIUM•FC = RR V MEDIUM.FC = NRR

and the associated action is

MEDIUM -0.

Because the delete transition of the demon machine and at least one of the rcv transi-

tions of the receiving machine will be enabled at the same time, any data message written

onto the channel has the possibility of being lost. Note that this enabling predicate only

allows data messages to be deleted (not tokens or acknowledgements). Lost tokens and

acknowledgements can be handled in a similar manner, but are not included here for the

sake of brevity.

A word should also be said concerning the timer that magically enables the timeout

transition. This timer and the concept of time have not been formally defined here.

However, it is simply assumed that a machine needing a timer can set one, and be

interrupted when the timer expires. Of course this is frequently done by programs in

computers, but for a formal analysis the timer should be included as a part of the formal

specification and definition. One possible way of doing this is to include a timer as an

additional, subordinate machine to the network station. This is done, in fact, in other

research on this model for a high speed protocol, FDDI (fiber distributed data interface)

[14].

40

VII. SUMMARY
The introduction of this thesis described the importance of formally specifying and

analyzing communication protocols. Early methods that pre-date the model used here

were mentioned. Then a short description of some well known protocols, their history,

and analysis completed on them were presented. The topic of this thesis, a formal

specification and analysis using systems of communicating machines on a token bus

protocol was then introduced.

A formal specification of the token bus protocol was given, as well as an analysis

for safety and liveness properties. The analysis showed that the protocol was free from

deadlocks and nonexecutable transitions, and that progress in communication must also

occur.

The method used to specify the protocol was a formal description technique, or

model, called systems of communicating machines [12-18]. This is a model designed

especially for computer communication networks, which uses a combination of finite

state machines and variables in the specification of each machine, and shared variables

for communication between machines. An analysis technique called system state analysis

was applied to a network of two machines. This method is unique to this protocol model,

although the idea is similar to some other methods of reachability analysis. The analysis

was then generalized through proofs to an arbitrary number of machines. Proofs showed

that the protocol is free from deadlocks and nonexecutable transitions, and that the

successful transfer of data is guaranteed.

Following the proofs, a working program written in the object oriented language,

C++, was presented. This program treated each machine of a three station network

as an independent object. It demonstrated that the specification and analysis of the

protocol, as presented in the thesis, were complete and accurate.

41

Finally, the protocol specification was extended to include more features of the to-

ken bus as specified in the IEEE Standard. This extension included transmitting and

receiving two types of data frames, acknowledgments sent from the receiver, timeouts

in the sender, and receipt of acknowledgments at the sender. An extended system state

analysis for a network of three machines was then provided.

Transmission errors (losses) in the channel were modeled through the use of an addi-

tional machine called demon, which arbitrarily deleted data messages appearing in the

channel. Success of the demon would lead to timeouts in the network machines.

This thesis has shown the applicability of systems of communicating machines to the

modeling of a well-known protocol, and has shown the logical behavior and strengths of

that protocol. It provides confirmation that the model is useful for formal specification

and should be considered a viable technique for the development of industrial standards

for communication protocols and other complex software.

42

APPENDIX A

C++ CODE

// Modeling the Token Bus Protocol with Systems of Communicating Machines.

fl Author. L. J. Charbonneau, LT, USN May 1990
// System: Vax 11/780
// Compiler: C++ Version 1.2
/-
// This file is a C++ header file that sets up the structure and
// executes the transitions for a four state finite state machine object.
/ The independent object is station I of a simplified token bus network.
// This stations's ID is 1. The outbuf for this station
// is set at 5. This means that 5 messages are available for transmission
// every time station 1 gets the token.

//File tkbus-stal.h

#include <string.h>

// The following fields are defined externally in tkbus.C and are visible
/ at all times at all station objects.
exter int n; /P n = number of nodes in the network.*/
extern THT; * THT = max token holding time of one station.*/
extern int medium; /P 1 = commbus is busy. 0 = commbus is empty. */
extern char t; /P t = type of frame; T = token, D = data */
extern int da; /P da = dest address of message. Who gets it. */
extern int sa; * sa = source address of message. Who sent it. */
extern char* datamsg; /P contents of the messages on the network. */

43

snruct parenti P* Parent structure for the 4 states in Whs FSM *

static char *dta;
static int i;
static int next;
static int ctr,
static int inbuf;
static int outbuf;
static int doom-state;

parenti 0

data ="data ... msg...from...stal...";
i =1; P Station ID .1*
next =n; 1P Logical next =station n.*/
ctr = 0;
inbuf = 5;
outbuf = 0;
doom_state = 0;

virtual parenti *transjtion() ;

/* Structure for state 0. */

struct n I stateO : public parent 1
(

parentl *ptrl, *ptr2; /* state 0 has out arcs to state 1 and state 2.*/
nlstateO0: 0 ()
parent1 *transition(;1;

/* Structure for state 1. */

struct nIstatel : public parentI
(

parenti *ptrO; /* state 1 has an out arc only to state O/
nlstatelO : 0 (1
parent1 *transition);

1;

/* Structure for state 2. */

struct n 1state2 : public parent I(
parent1 *ptrO, *ptr3; /* state 2 has out arcs to state 0 and state 3.*/
nlstate20: 0 1
parent 1 *transition);

1;

/* Structure for state 3. */

struct nlstate3 : public parentl
{

parentl *ptrO, *ptr2; /* state 3 has out arcs to state 0 and state 2 .*
nlstate30 : 0 ()
parent 1 *transitionO;

4;

45

1* This function performs the transitions when current state = state 0.

parenti *nlstate0::transition()

/* If it's a token for you, ~
if ((t = 'T') && (da == i))
1* get..tk I medium= =0; /* Clear the medium. *

t = v,,

a= 0;
sa = 0;
ctr = 1; 1* Set message counter to 1.*/
printf("\n~nget_tk_stalI ");
return ptr2;) * GO TO STATE2. *

/* If it's a msg for you, ~
if ((t - 'D') && (da -= i))
/* rcv *1 {inbuf =rmediumn; /* Copy it to your inbuf. ~

printf('\rcvmsg.at-.sta 1 ");
return ptrlI;) /* GOTO STATE1 L1

else doom_state = 1; return this;

1* This function performs the transitions when current state = state 1. *

parent I *n 1 state 1: :transition()

medium = 0; 1* Clear the medium. *
/* ready/ t-=' ';

da = 0;
sa = 0;
printf('Nnsta I -eady");
printf("\n medium = clear");
return ptrO; /* GO TO STATEO. *

46

P* This function performs the transitions when current state = state 2. *

parentl n 1state2: :transition()

if (outbuf == 0) P* If outbuf is empty, *
P~ pass *1 (t ='T'; P* send token msg to next.*/

da =next;

sa i;
printf('Nnpass. No-rmsgsjin-.outbuf at _sta 1")
printf('Mn medium = tk ... msg ... for ... sta%d",da);
return ptrO;) /* GO TO STATEO. *

if (outbuf !=0) P* If outbuf not empty, *
P* Xmit I medium = 1; P* put data msg on mediumn.*/

t = ' '
da = 2;
sa = 1;
data-msg = data;
printf('\nxmitmsgfromstal I)
printf("\n medium = %sfor...sta%d",data -msg,da);
outbuf--; P* pt to next msg in outbuf *
ctr++; P* increment msg counter ~
return ptr3; P GO0 TO STATE3. *

else
(doom-state =1; return this;

47

/* This function performs the transitions when current state = state 3. */

parentl *nl state3::transition0
I

/* If medium is empty AND */
/* ((outbuf is empty) OR */
/* (ctr is over THT)), */

if ((medium -- 0) && ((outbuf == 0) 11 (ctr > THT)))
/* passk */ (t = 'T'; /* send token msg to next. */

da = next;
sa =i;
printf('npass tkfrom-stal);
if (ctr > THT)

(prinf("\n THT.. .exceeded");}
else if (outbuf == 0)

(printf(\n outbuf...is...empty"); }
printf("\n medium = tk...msg...for...sta%d",da);
outbuf = 5;
ctr = 0;
return ptr0; } /* GO TO STATEO. */

/* If medium is empty AND */
/* outbuf is not empty AND */
/* ctr is <= THT, *

if ((medium == 0) && (outbuf != 0) && (ctr <= THT))
/* moreD I/ [

printf('\nmore-datainoutbuf_at-stal ");
return ptr2;) /* GO BACK TO STATE2. */

else doomstate = 1; return this;

48

// Modeling the Token Bus Protocol with Systems of Communicating Machines.
/-
// Author: L. J. Charbonneau, LT, USN May 1990
// System: Vax 11780
/ Compiler: C++ Version 1.2
fl
fl This file is a C++ header file that sets up the structure and
// executes the transitions for a four state finite state machine object.
// The independent object is station 2 of a simplified token bus network.
// This stations's ID is 2. The outbuf for this station
// is set at 1. This means that 1 message is available for transmission
// every time station 2 gets the token.

H File tkbussta2.h

#include <string.h>

// The following fields are defined externally in tkbus.C and are visible
fl at all times at all station objects.
extern int n; /* n = number of nodes in the network.
extern THT; /* THT = max token holding time of one station. */
extern int medium; /* 1 = commbus is busy. 0 = commbus is empty. */
extern char fc; /* fc - type of frame; t = token, d = data. */
extern int da; /* da = dest address of message. Who gets it. */
extern int sa; /* sa = source address of message. Who sent it. */
extern char* datamsg; /* contents of the messages on the network. */

49

struct parent2 /* Parent structure for the 4 states in this FSM "/
(

static char *data;
static int i;
static int next;
static int ctr;
static int inbuf;
static int outbuf;
static int doomstate;

parent2()
{

data = "data...msg...from...sta2...";
i = 2; /* Station ID =.2 *
next = i - 1; /* Logical next = station 1.*/
ctr = 0;
inbuf = 1;
outbuf = 0;
doom-state = 0;

}

virtual parent2 *transition() [;

50

1* Structure for state 0. */

struct n2stateO :public parent2

parent2 *ptrl, *ptr2; 1* state 0 has out arcs to state 1 and state 2 *
n2stateOO :0 ()
parent *traxnsitonO;

/* Structure for state 1. *

struct n2statel :public parent2

parent2 *ptiro; 1* state 1 has an out arc only to state 0 *
n2statel() : (1(
parent2 *transitiono;

* 1* Structure for state 2. *

struct n2state2 :public parent2

parent2 *ptro, *ptr3; 1* state 2 has out arcs to state 0 and state 3 *
n2state20 : 0 ()
parent2 *tranjtiflO;

/* Structure for state 3. *

struct n2state3 :public parent2

parent2 *ptr4J, *ptr2; /* state 3 has out arcs to state 0 and state 2 *
n2state30 : 0 ()
parent2 *transitiono;

51

/* This function performs the transitions when current state = state 0.

parent2 *n2state0::transition0

/* If it's a token for you, */

if ((t =--= 'T') && (da- = i))
/* gettk */ { medium = 0; /* Clear the medium. */

da =0;
sa =0;
ctr 1; /* Set message counter to 1.

printf('nget_tk-sta2");
return ptr2;) /* GO TO STATE2. */

/* If it's a msg for you, */

if ((t == 'D') && (da == i))
/* rcv */ (inbuf = medium; /* Copy it to your inbuf. */

printf('nrcv msg-aLsta2");
return ptrl;) /* GO TO STATEl. */

else doomstate = 1; return this;

/* This function performs the transitions when current state = state 1. */

parent2 *n2statel ::transition()

medium = 0; /* Clear the medium. */
/* ready */ t =' ';

da = 0;
sa = 0;
printf("\nsta2_ready");
printf('n medium = clear");
return ptr0; /* GO TO STATEO. */

52

P* This function performs the transitions when current state = state 2. *

parent2 *n~state2::trnstion()

if (outbuf =0) P* If outbuf is empty, *
P* pass ~/ (t =T' P send token msg to next.*/

cia =next;

sa =;

printf('\npass. No-msgsjnoutbuf at._sta2"');
printfC' \n medium = tk ... msg ... for .. sta%d', cia);
return ptr;) P GO TO STATEO. *

if (outbuf !=0) /* If outbuf not empty, *
P Xmit* I medium =1; P* put data msg on medium.*/

t = 'D';
da =3;
sa = 2;
datamsg = data;
printfC"\nxmit-msg..from ~sta2");
printf("\n medium = %sfor ... sta%d",datamsg,da);
outbuf--; P~ pt to next msg in outbuf *
ctr++; P~ increment msg counter *
return ptr3;) P/ GO TO STATE3. *

else
(doom-State =1; return this;)

53

/* This function performs the transitions when current state = state 3. */

parent2 *n2state3::transition0

/* If medium is emptyMAD */

1* ((outbuf is empty) OR *1
I* (ctr is overTT), *I

if ((medium 0) && ((outbuf == 0) 11 (ctr > THT)))
/* pass..tk */ (t = 'T'; /* send token msg to next. */

da = next;
sa = i;
printf("\npass tkfromsta2");
if (ctr > THT)

(prinf('Nn THT...exceeded"); }
else if (outbuf == 0)

(printf("Nn outbuf...is... empty");
printf('n medium = tk...msg...for...sta%d",da);
outbuf = 1;
ctr = 0;
return ptr0;} /* GO TO STATEO. */

/* If medium is ei pty AND *1
/* outbuf is not empty AND */
/* ctr is <= THT, */

if ((medium == 0) && (outbuf != 0) && (ctr <= THT))
/* moreD *

printf('\nmore-datainoutbuf.at-sta2");
return ptr2; } /* GO BACK TO STATE2. */

else doom-state = 1; return this;

54

// Modeling the Token Bus Protocol with Systems of Communicating Machines.
/-
fl Author: L. J. Charbonneau, LT, USN May 1990
fl System: Vax 11/780
fl Compiler: C++ Version 1.2
//
fl This file is a C++ header file that sets up the structure and
// executes the transitions for a four state finite state machine object.
/# The independent object is station 3 of a simplified token bus network.
// This stations's ID is 3. The outbuf for this station
// is set at 3. This means that 3 messages are available for transmission
// every time station 3 gets the token.

H File tkbussta3.h

#include <string.h>

fl The following fields are defined externally in token_bus.C and are visible
/ at all times at all station objects.
extern int n; /* n = number of nodes in the network. */
extern THT; /* THT = max token holding time of one station. */
extern int medium; /* 1 = commbus is busy. 0 = commbus is empty. */
extern char fc; /* fc = type of frame; t = token, d = data. */
extern int da; /* da = dest address of message. Who gets it. */
extern int sa; /* sa = source address of message. Who sent it. */
extern char* datamsg; /* contents of the messages on the network. */

55

struct parent3 1* Parent structure for the 4 states in this FSM /

static char *data;
static int. i;
static int next;
static int ctr,
static int inbuf;
static mnt outbuf;
static int doom-state;

parent3()

data = "data...mrsg ... from ... sta3..";
= 3; /* Station ID=3. *

next = i - 1; 1* Logical next =station 2.*/
ctr = 0;
inbuf = 3;,
outbuf = 0;
doom-state = 0;

virtual parent3 *transjtiofl) o

56

/* Structure for state 0. ~

struct n3stateO :public parent3

parent3 *ptrl, *ptr2; 1* state 0 has out arcs to state 1 and state 2 ~
n3stateO0): 0) 1)
parent3 *=rlsitiono;

/* Structure for state 1. *

struct n3statel :public parent3

parent3 *ptrO; /* state 1 has an out arc only to state 0 *
n3statel0: 0 ()
parent3 *transjtjofl0;

/* Structure for state 2. *

struct n3state2 :public parent3

parent3 *ptlro, *ptr3; /* state 2 has out arcs to state 0 and state 3 *
n3state2) :0 ()
parent3 *traflsjtion0;

/* Structure for state 3. *

struct n3state3 : public parent3

parent3 *ptrO, *ptr2; 1* state 3 has out arcs to state 0 and state 2 *
n3state30 : 0 1)
parent3 *transjtiofl0;

57

/* This function performs the transitions when current state = state 0. */

parent3 *n3state0::transition0
(

/* If it's a token for you, */
if ((t 'T') && (da == i))
/* gettk */ (medium =0; /* Clear the medium. */

da =0t;
da = 0;
sa-=0;

ctr = 1; /* Set message counter to 1.*/
printf('\n\nget tksta3");
return ptr2; } /* GO TO STATE2. */

/* If it's a msg for you, *1
if ((t =--= 'D') && (da == i))
/* rcv */ { inbuf = medium; /* Copy it to your inbuf. */

printf('rcv msg-at.-sta3");
return ptrl; /* GO TO STATE1. *

else doom_state = 1; return this;

1* This function performs the transitions when current state = state 1.

parent3 *n3statel ::transition()
(

medium = 0; /* Clear the medium. */
/*ready*/ t='';

da = 0;
sa = 0;
prinf('nsta3jeady");
printf("\n medium =........................ clear");
return ptr0; /* GO TO STATEO. */

58

/* This function performs the transitions when current state = state 2. *

parent3 *n3state2: :transitionO

if (outbuf == 0) /* If outbuf is empty, *
1* pass *1 1t ='T'; /* send token msg to next.*/

da =next;

sa i;
printf'npass. No -msgsjn.outbuf-at-sta3");
printf(Nn medium = tk ... msg...for ..sta%d",da);
return ptr;) /* GO TO STATEO. *

if (outbuf !=0) /* If outbuf not empty, *
1* Xmit ~/ (medium = 1; 1* put data msg on medium.*/

t= ''

da= 1;
sa = 3;
datajnsg = data;
printf("\nxmitmsgjfrom.sta3");
printf("\n medium = %sfor ... sta%d",datajn sg,da);
outbuf--; 1* pt to next msg in outbuf *
ctr++; /* increment msg counter ~
return ptr3; I /* GO TO STATE3. *

else
(doomrstate =1; return this;

59

/* This fuinction performs the transitions when current state =state 3.I

parent3 *n3stateI::transitionO

1* If medium is empty AND *
/* ((outbuf is empty) OR *
/* (ctr is over THT)),*

if ((medium =0) && ((outbuf == 0) 11 (ctr > THT)))
1* pass..sk *1 (t = 'T'; 1* send token msg to next. *

da = next;
sa = i;
printfC"\npass -tk~fromnsta3");
if (ctr >THT)

(printfC"\n THT...exceeded");)
else if (outbuf ==0)

(printfC'Nn outbuf...is ... empty");)
printf("\n medium = tk ... msg ... for ..sta%d",da);
outbuf = 3; ctr =0;
return ptr;) 1* GO TO STATEO. *

/* If medium is empty AND *
1* outbuf is not empty AND *
I* ctr is <= T, *,

if ((medium =0) && (outbuf !=0) && (ctr <= THlT))
/* more..D *1 (

printf(\Nnmore-data-in--outbuf~aLsta3");
return ptr2) /* GO BACK TO STATE2. *

else doomn-state =1; return this;

60

// Modeling the Token Bus Protocol with Systems of Communicating Machines.
I-
// Author: L. J. Charbonneau, LT, USN May 1990
// System: Vax 11/780
// Compiler: C++ Version 1.2
// This file contains the main program and is the driver for a
// simulated token bus network of 3 independent stations. The stations
fl are individually set up in the three header files that are #included
// below. Another station can easily be added to the network by including
// another "tkbusXXX.h" header file. The appropriate variables and
// constants must be set in this header file to account for station ID,
// contents of outbuf, destination address of the downstream neighbor, etc.
// Also, the states must be added for this new node and maino must be
// modified for initialization and transition execution. Since the
// concept is the same for each station, you could add many stations.

fl File tkbus.C

include <stdio.h>
include "tkbus_stal.h" /* Station 1 FSM object. */

#include "tkbussta2.h" /* Station 2 FSM object. */
#include "tkbus-sta3.h" /* Station 3 FSM object. */

/*GLOBAL VARIABLES; ALL ARE VISIBLE AT ALL NETWORK STATIONS. */

int n = 3; /* n = number of nodes in the network.
int THT = 4; /* THT = max token holding time of one station. */
int medium = 1; /* 1 = commbus is busy. 0 = commbus is empty. */
char t = 'T'; /* t = type of frame; T = token, D = data.
int da = 3; /* da = dest address of data-msg or tk.msg. */
int sa = 0; /* sa = source address of datamsg. Who sent it. */
char *data msg = "no msg yet"; /* contents of the msgs on the network.

61

I' Station 1 states. /
nlstateO node lsO;
nistatel nodel..sl;
nlstate2 nodel-s2;
nlstate3 nodel-s3;

/* Station 2 states. *I
n2stateO nodc2_sO;
n2state 1 node2...s 1;
n2state2 node2..s2;
n2state3 node2,_.s3;

/* Station 3 states. */
n3stateO node3...s;
n3statelI node3..slI;
n3state2 node~s2;
n3state3 node3 .. s;

1* This function builds the finite state machines for all the stations. *
void build-state_machines()

nodel__sO.ptrl = &nodelsl; // Set up out arcs from state 0
node2_sO.ptrl = &node2_sl;
node3_sO.ptrl = &node3_.sl;
nodel-sO.ptr2 = &nodel-s2;
node2_sO.ptr2 = &node2..s2;
node3_sO.ptr2 = &node3-s2;
nodel-sl.ptrO = &nodel-s0; #I Set up out arcs from state 1
node2_sl.ptr0 = &node2..sO;
node3_sl.ptrO = &node3-.sO;
nodel-s2.ptrO = &nodel-s0; // Set up out arcs from state 2
node2_s2.ptr0 = &node2-s0;
node3_s2.ptO = &node3-.sO;
nodel-s2.ptr3 = &nodel-s3;
node2...s2.ptr3 = &node2.s3;
node3...s2.ptr3 = &node3..s3;
nodel-s3.ptr0 = &nodel-s0; #I Set up out arcs from state 3
node2_.s3.ptrO = &node2..sO;
node3_s3.ptrO = &node3-.sO;
nodels3.ptr2 = &nodels2-:
node2...s3.ptr2 = &node2..s2;
node3_s3.ptr2 = &node3.s2;

62

1* This is the MAIN function of the token bus program. *

main0

printf('NnGOING FOR A RIDE WITH THE TOKEN BUS PROTOCOL'\n");

buildstate_machineso;

parenti *stal; /* Pointer to the current state of Station 1. *
parent2 *stw; /* Pointer to the current state of Station 2. *
parent3 *sta3; /* Pointer to the current state of Station 3. *

1* Print out the initialization values. What is each machines
/* current state? What is the THT set to and what is on the medium. *

printf("\.nlnitial conditions are: ");
printf('M. All stations are in stateO)

printf(C n Token holding time (THT) is set at %d msgs per station",THT);
printf('\n medium = tk ... msg. ..for...sta%d",da);

/* All stations start in state 0 and execute their initial transition. *

stal = nodelI sO.transitiono;
sta2 = node2_sO.transitiono;
sta3 = node3_sO.transition0;

/* If all stations are doomed after the first transition, *
if ((stalI -> doom-state == 1) &&

(sta2 -> doom-state = 1) &&
(sta3 -> doomn_state =)

printf(" \n ** Invalid initial transition ** jM)
)/*' end if */

mnt tcounter = 1; 1* Transition counter. Used to terminate tkbus.C. *

63

/* This WHILE LOOP enables the program to act like a token bus network. */
/* Provided that one transition at one station becomes enabled at any */

/* iteration of this loop, the program will continue until terminated.
/* The token will be passed between all of the stations; and messages */
/* will be transmitted and received. */

/* As long as one station transitioned, and tcounter<100, keep going. */
while (((stal -> doomstate != 1) 11

(sta2 -> doom-state != 1)11
(sta3 -> doom-state != 1)) &&

(tscounter < 100)) /* Stop at 100 */
/* This clause can be removed and */
/* the program will run forever. */

{/* Reset the doomstates at all stations. */

stal -> doomstate = 0;
sta2 -> doom-state = 0;
sta3 -> doomstate = 0;

/* Transition again. New state = the old state after transition. */
stal = stal -> transitiono;
sta2 = sta2 -> transitiono;
sta3 = sta3 -> transitiono;

t-counter++; /* Increment tcounter. */

/* If all stations are doomed after the above transition, ERROR */
if ((stal -> doom_state == 1) &&

(sta2 -> doomstate == 1) &&
(sta3 -> doomstate == 1))

I
printf(" \n Invalid transition, DEADLOCK has occurred ***.\,");

I/* end if */

/* end while */

printf('n \,n %d Transitions completed. \n \n", t-counter);

printf(\n YOUR BUS RIDE IS OVER!!! \n \n");

/* end main */

64

APPENDIX B

SAMPLE get-tklpass-tk TRACE

**NOTE: The outbufs of all stations were set to 0 before this trace was produced.

Script started on Tue May 29 00:42:02 1990
nps-cs [[1]] tkbus

GOING FOR A RIDE WITH THE TOKEN BUS PROTOCOL!

Initial conditions are:
All stations are in state0
Token holding time (THT) is set at 4 msgs per station
medium = tk ... msg. ..for. ..sta3

get-tk-sta3
pass. No-msgsjin-utbu~at-st3

medium = tk ... msg.. .for.. .st2

get~tksta2
pass. No-msgsjno-utbufj-asta2
medium = tk ... msg ... for ... stal1

gettk-sta 1
pass. Nomsgsjnoutbu~at_stalI

medium = tk. ..msg.. .for.. .sta3

getjk.sta3
pass. No...sgsin-outbuf at~sta3

medium = tk... .msg.. .for... .sta2

65

get.-tk-sta2
pass. No _msgsjn-outbuf-at-Sta2
medium = tk ... msg ... for ... sta I

get_tk~stal
pass. No...msgsjl-outbuf~atstal

medium = tk ... msg ... for ... sta3

gectksta3
pass. Nojnsgsjn..utbuf a~sta

medium = tk ... msg ... for ... sta2

getLksta2
pass. No-sgsjn1outbuf at-sta2
medium = tk. ..msg. ..for ... stal

getjk.sta 1
pass. No-jnsgsin-outbuf -at-stal

medium = tk ... msg ... for.. .sta3

gettk.sta3
pass. No..msgs-in.outbuf-at-sta3

medium = tk.. .msg ... for.. .sta2

geLtksta2
pass. No...msgsin-outbuf at-sta2
medium = tk...msg ... for ... stal

getksta 1
pass. No-msgsj-n-outbu~at-stal

medium = tk ... msg ... for ... sta3

gettksta3
pass. No...msgsjn..outbuf~atsta3

medium = tk... .msg... .for... .sta2

66

get-tk~sta2
pass. No_msgsjnoutbu~at_sta2
medium = tk ... msg ... for ... stal

get-tk~stal
pass. No-msgsjn..outbuf~at__stal

medium = tk ... msg ... for ... sta3

get-tic-sta3
pass. No -msgsn..outbufj_at_sta3

medium = tk.. .msg.. .for ... sta2

ge t ti_st2
pass. No.-msgsj-n..outbuf!-at-sta2
medium = tk ... msg ... for-.stal

get ti_stalI
pass. No-msgsjn..utbuf at-stal

medium = tic.. .msg.. .for.. .sta3

get-tic-sta3
pass. No -msgs-jn..outbuf at_sta3

medium = tic... msg.. .for.. .sta2

getuticsta
pass. No -msgsjn..outbuf-at-sta2
medium = tk ... msg ... for... sta I

get~tk_stal
pass. No _msgsjn..outbuf_at_stal

medium = tk ... msg.. .for ..sta3

getuk-sta3
pass. No-msgsinoutbu~at_sta3

medium = tic.. .msg ... for.. .sta2

67

get_tk s2
pass. No-msgs-jn..outbufj_at~sta2
medium = tk ... msg ... for ... stal

get-tk--stal
pass. No-msgsin-outbufl-at-stal

medium = tk...msg ... for ... sta3

getuk-sta3
pass. No...msgsn....outbufj-atsta3

medium = tk ... msg ... for ... sta2

get-tk-sta2
pass. No-msgsjn.putbuf~at sta2
medium = tk ... msg...for ... stal

get~tk-stalI
pass. No.-msgsl-n..outbuf~at_stal

medium = tk... .msg ... for ... sta3

get k-sta3
pass. No -msgsjn...outbufl-at-sta3

medium = tk.. .msg ... for.. .sta2

get-tk-sta2
pass. No--msgsjnoutbu~at-sta2
medium = tkc ..msg ... for ... stal

get_tk_stal
pass. No-.msgsj-n..outbufl-at-stal

medium = tk ... msg ... for ... sta3

get~tk-sa3
pass. No-msgsin-outbu~at-sta3

medium = tk ... msg.. .for ... sta2

68

get -tk-st2
pass. No-msgsjn.outbuf~at_sta2
medium = tk ...mrsg ... for ... sta I

get~tk--stalI
Pass. No-msgs~Jn...utbufl-at-stal

medium = tk ... msg ... for ... sta3

getuk-st3
Pass. No -msgsln...outbuf~at--sta3

medium = tic... .msg ... for ... sta2

getkticsta2
pass. No -mrsgsjn..outbuf at-sta2
medium = tk...msg. .. or. .. stal1

get-tic~stalI
pass. No-msgsjn.outbuf at -stal

medium = tkmsg.. .fr.. .sta3

get-tic-sta3
pass. No-rmsgsjnoutbufj-at-sta3

medium = tk ... msg. ..for ... sta2

get-tic-sta2
pass. No-rmsgs-jn.outbuf at_sta2
medium = tk ... msg ... for ... stal

get-tic_stalI
pass. No-msgsin-outbu~at_stal

medium = tk ...mrsg.. .for.. .sta3

get-tic-sta3
pass. No-msgs-n.outbuf~at-sta3

medium =k .i.. .msg.. .for.. .sta2

69

get-tk--sta2
pass. No -msgsjin-.outbufl-at-sta2
medium = tk ... msg ... for ... stal

get_tk_stalI
pass. No-msgsj-n...outbuf at~stal

medium = tic.. .msg...for ..sta3

get_ticsta3
pass. No...msgs-n..utbuf at-sta3

medium = tk ... msg ... for ... sta2

getti_sta2
pass. No...msgsn....outbufLatLSta 2

medium = tk ... msg ... for. ..stal

gettksta 1
pass. No....msgsjn~outbufj-at-stalI

medium = tk ... msg.. .for ... sta3

get.k~sta3
pass. No-msgsjinjoutbuf at-sta3

medium = tk ... msg ... for ... sta2

gettk..sta2
pass. Nomsgs_n-outbuf at-sta2
medium = tk ... msg ... for ... sta I

get..tk...sta 1
pass. No-msgsin-outbuflat-stal
medium = tk ... msg.. .for ... sta3

getjk.sta3
pass. No msgsjn.outbu..at-sta3

medium = tk ... msg ... for ... sta2

70

get-tic-sta2
pass. No-msgsjn.outbuf!-at-sta2
medium = tk...msg ... for ... stalI

get-tk_stal
pass. No -msgsjn...utbuf~at-stal

medium = tk ... msg.. .for ... sta3

get-tk-sta3
pass. No -msgsjn..outbufj_at~sta3

medium = tk ... msg ... for ... sta2

get_tk_sta2
pass. No--msgsjinjutbuf_at_sta2
medium = tk ... msg. .. for ... stal

get-tic-stal1
pass. No-msgsin-outbu~at-stal

medium = tk ... msg.. .for.. .sta3

get-tk-sta3
pass. No.-msgsjn..outbuf-at-sta3

medium = tic... .msg ... for ... sta2

get-tic-sta2
pass. No-msgsjinoutbuf~at-sta2
medium = tk. ..msg. .. for ... stal

get tic-stal
pass. No-msgsJn-outbuf-at-stal

medium = tk ... msg ... for.. .sta3

get-tic-sta3
pass. No--msgsjinoutbu~at_sta3

medium = tk ... msg ... for.. .sta2

71

get-tk-sta2
pass. Nojnsgsjn.outbufj-at-sta2
medium = tk ... msg ... for ... stal

get-tic-stalI

100 Transitions completed.

YOUR BUS RIDE IS OVER!!

72

APPENDIX C

SAMPLE PROGRAM TRACE

Script started on Tue May 29 00:25:59 1990
nps-cs [[1]] tkbus

GOING FOR A RIDE WITH THE TOKEN BUS PROTOCOL!

Initial conditions are:
All stations are in stateO
Token holding time (THT) is set at 4 msgs per station
medium = tk...msg...for...sta3

gettk_sta3
xmit msgjfromsta3
medium = data...msg...ffrom...sta3...for...stal

rcv..msg-at-stal
sta 1 -jeady

medium = clear
more-datain-outbuf_atsta3
xmit.msgjfromsta3

medium = data...msg...from...sta3...for...stal
rcv-msg.at-sta 1
stalready

medium = clear
moredatain_outbuf atsta3
xmiLmsgfromsta3

medium = data...msg...from...sta3...for.. .stal
rcvmsgat_stal
stalready

medium = clear
passtk_fromsta3

outbuf...is ...empty
medium = tk...msg...for...sta2

73

get-tk-sta.2
xmiLmsgifrom-sta2

medium = data...msg ... from...sta2 ... for.. .sta3
rcv...msgat-sta3
sta3...ready
medium =clear

pass -tk-fom~sta
outbuf .. is ... empty
medium = tk ... msg ... for ... sta 1

get-tk~stal
xmitjnsg..from-stal
medium = data ... msg ... from ... stal...for ... sta2

rcv...msg-at-sta2
sta2_eady
medium =..................... clear

more-data~in-outbuf~atstal
xmit-Msgjfromnstal

medium = data ... msg ... from ... stal ... for ... sta2
rcv...msg..at~sta2
sta.2..ready
medium =..................... clear

more-data-in-outbuf~at-stal
xmit..msgjfrom-stal

medium = data ... msg...from ... stal ... for ... sta2
rcvjnsg..atsta2
sta2...ready
medium =..................... clear

more-data-in-outbuf-at-stal
xmicmsgjfromnsta I

medium = data ... msg ... from ... stal ... for ... sta2
rcv-msg-at-sta2
sta.2..ready

medium =..................... clear
pass _tkjfromrstal

THT ... exceeded
medium = tk ... msg ... for.. .sta3

74

get-tksta3
xmiLmsgjfromsta3

medium = data...msg...from.. .sta3...for.. .stal
rcv-msgatstal
stal_ready
medium = clear

more_datainoutbuf_at-sta3
xmiLmsgfromsta3
medium = data...msg...from.. .sta3...for...stal

rcv_msgat_stal
stal-ready
medium = clear

moredatainoutbuf_aLsta3
xmiLmsgjfromsta3

medium = data...msg...from...sta3...for...stal
rcvmsgat_stal
stal_ready

medium = clear
passtk_fromsta3

outbuf...is ...empty
medium = tk...msg...for...sta2

geLtk_sta2
xmit-msg-fromsta2

medium = data ...msg ...from...sta2...for.. .sta3
rcv-msgatsta3
sta3_ready
medium = clear

pass tkfrom_sta2
outbuf...is...empty
medium = tk...msg...for...sta I

get_tk_stal
xmit.msgfromstal

medium = data...msg...from...stal...for...sta2
rcvmsgat.sta2
sta2_ready

medium = clear
moredatain_outbuf_at_sta1
xmitLmsgfromstal
medium = data...msg...from...stal...for...sta2

75

rcv...msg...at-sta2
sta2_ready

medium = clear
more-datain-outbufl-atstal
xnmitmsg..frm~stal

medium =data ... isg ... from ... stal ... for ... sta2
rcv_=.mg..at~sta2
sta2_eady
medium................. clear

more_datajin_outbuf-at-stal.
xmiLmsg..fromz_stal

medium =data ... msg ... from ... stal ... for ... sta2
rcv-msg-at-sta2
st2j-eady
medium = clear

pass,_tk_from-stal
THT ... exceeded
medium =tk ... msg...for... sta3

get~tc-sta3
xmit-msgjfrom-sta3

medium =data. ..msg...from ... sta3.. .for.. .stal
rcvMsgastal
stal-ready

medium = clear
more-data-in-outbuf~atsta
xmit.msgjrom-sta3

medium = data ... msg. ..from ... sta3 ... for ... stal
rcv..msg..at_stal
stal-ready

medium = clear
more-data~in-outbuf-at-sta3
xmit-msg..fromrista3

medium = data ... msg. ..from ... sta3 ... for.. stal
rcv...msgat-stal
stal-ready
medium = clear

pass-tk ftrm-st3
outbuf...is. ..empty
medium = tic.. .msg ... for ... sta2

76

get_tk_sta2
xmit-msgjfromsta2

medium = data...msg ...from...sta2...for.. .sta3
rcvmsgat_sta3
sta3_ready

medium = clear
pass-tifromsta2

outbuf...is...empty
medium = tk...msg...for...stal

get_tkstal
xmit-msg.from_stal

medium = data...msg...from...stal...for...sta2
rcvmsg_.at_sta2
sta2_ready
medium = clear

moredatainoutbufatstal
xmimsg_fromstal

medium = data...msg...from...stal...for...sta2

rcv-msg..at_sta2
sta2jeady

medium = clear
moredatainoutbuf_atstal
xmitmsg.from-stal

medium = data...msg...from...stal...for...sta2
rcv-msg-atsta2
sta2_ready
medium = clear

moredatainoutbuf_atstal
xmit_msg.from_stal

medium = data...msg...from...stal...for...sta2
rcv -msg.atsta2
sta2_eady

medium = clear
pass_tkfrom_stal
THT...exceeded
medium = tk...msg...for...sta3

77

get_tk-sta3
xmi..msgjrtom-sta3

medium = data. ..msg ... from ... sta3 ... for ... stal
rcv...msgat-stal
stal-ready

medium clear
more-data~in-outbuf-at-sta3
xmit-msgjfromrsta3

medium = data ... msg ... from ... sta3 ... for ... sta I
rcv...mgat-stal
stal.I.-ready

medium =................. clear
more-data. -in -outbuf-at-sta3
xmitmsg..from-sta3

medium = data. ..msg. .. from ... sta3 ... for.. .stal
rcv..msgat_sta 1
sta lready

medium =..................... clear
pass, tk-from-sta3

outbuf..empty
medium = tkmsg ... for.. .sta2

get-tic-sr2
xmitjnsgjfrom-sta2

medium = dat-. ..msg ... from ... sta2 ... for.. .sta3
rcvmsg..at -sta3
sta3_y.eady

medium =..................... clear
pass, ticfrom-sta2
outbuf.. is. .. empty
medium = tk ... msg ... for ... stal

get-tic-stalI
xmit-msgjriom-stal

medium = data ... msg ... from...stal ... for ... sta2
rcvmsg-at-sta2
sta2...ready

medium =..................... clear
more-data-in-outbuf at-stal
xm-itjnsgjfrom~sta I
medium = data ... msg ... from ... stal ... for ... sta2

78

rcv...msg..at_sta2
sta2_ready

medium =clear
more_data_in-outbufj_at~stal
xmit-msgjhrm~stal

medium = data ... msg ... from ... stal ... for...sta2
rcvmsg.at _sta2

100 Transitions completed.

YOUR BUS RIDE IS OVER!!!

79

.. . . l I I -. . , _

REFERENCES

[1] Bochmann, Gregor V. and Gecaei, Jan, "A unified Method for the Specification and Verifi-

cation of Protocols," Information Processing, 1977, North-Holland.

[2] Brinksma, Ed, "A Tutorial on LOTOS," Protocol Specification, Testing and Verification V,

North-Holland, 1985.

[3] Brown, G.M., Gouda, M.G., and Miller, R.M., "Block Acknowledgement: Redesigning the
Window Protocol," Proceedings of the A CM SIGCOMM Symposium, 1989, Austin TX.

[4] Choi, Tat Y., "Formal Techniques for Specification, Verification, -nd Construction of Com-
munication Protocols," IEEE Communications, 23(10), October 1985.

[5] Gallatin, T. and Khatib, H. A., "Token Bus vs. CSMA/CD for Broadband Backbone LANs,"
Proceedings of the IEEE Conference on Systems Design and Networks, Santa Clara, CA,
April 1989.

[6] Gburzynski, P. and Rudnicki, P. "A Better-than-Token Protocol with Bounded Delay Time

for Ethernet type LANs," Symposium on the Simulation of Computer Networks, Dept of
Computer Science, University of Alberta, Edmonton, Alberta, Canada, August 1987.

[7] Institute of Electrical and Electronics Engineers, Inc., IEEE Standard 802.3, Carrier Sense

Multiple Access with Collision Detection Access Method and Physical Layer Specifications,

1985.

[8] Institute of Electrical and Electronics Engineers, Inc., IEEE Standard 802.4, Token Bus

Access Method and Physical Layer Specifications, 1985.

[9] Institute of Electrical and Electronics Engineers, Inc., IEEE Standard 802.5, Token Ring

Access Method and Physical Layer Specifications, 1985.

[10] Johnson, M. J., "Proof that Timing Requirements of the FDDI Token Ring Protocol are

Satisfied," IEEE Transactions on Communications Vol Com-35, No. 6, June 1987.

[11] Linn, R. J., "The Features and Facilities of Estelle: a formal description technique based
upon an extended finite state machine model," Protocol Specification, Testing and Verifi-

cation V, North-Holland, 1985.

[12] Lundy, G. M., Systems of Communicating Machines: A Model for Communication Pro-

tocols, Ph.D. Thesis, School of Information and Computer Science, Georgia Institute of

Technology, Atlanta, GA, 1988.

80

[13] Lundy, G. M., "Specification and Analysis of the Token Bus Protocol Using Systems of
Communicating Machines," Proceedings of the IEEE Conference on Systems Design and

Networks, Santa Clara, CA, May 8-10, 1990.

[14] Lundy, G. M. and Akyildiz, Ian F., "A Formal Model of the FDDI Network Protocol,"
Department of Computer Science, Naval Postgraduate School, Monterey, Ca, June 1990.

[15] Lundy, G. M. and Miller, Raymond E., Specification and Analysis of a CSMA/CD Protocol
Using Systems of Communicating Machines, submitted to the 15th Annual Conference on
Local Computer Networks, IEEE Computer Society, Minneapolis, MN, 1990.

[16] Lundy, G. M., and Miller, Raymond E., A Variable Window Protocol Specification and Anal-
ysis, Eighth International Symposium on Protocol Specification, Testing and Verification,
Atlantic City, NJ, June 7-10, 1988.

[17] Lundy, G. M. and Luqi, "Specification of a Token Ring Protocol Using Systems of Commu-
nicating Machines," Proceedings of the IEEE Conference on Systems Design and Networks,
Santa Clara, CA, April 1989.

[18] Raiche, Carl, A Specification and Analysis of the IEEE Token Ring Protocol, M.S. Thesis,
Department of Computer Science, Naval Postgraduate School, Monterey, CA, 1989.

[19] Ross, F. E., "An Overview of FDDI: The Fiber Distributed Data Interface," IEEE Journal
on Selected Areas in Communications, September 1989

(201 Rudin, Harry, "An Informal Overview of Formal Protocol Specification," IEEE Communi-
cations, 23(3), March 1985.

[21] Shoch, J., Dalal, Y., Redell, D., Crane, R., "The Ethernet," Lecture Notes in Computer
Science, (184), Local Area Networks: An Advanced Course, Glasgow, July 1983.

[22] Tanenbaum, A., Computer Networks, Second Edition, Engelwood Cliffs, N.J., Prentice Hall,

Inc., 1988.

81

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. Curricular Officer, Code 37 2
Computer Technology
Naval Postgraduate School
Monterey, California 93943-5000

5. Superintendent 2
Computer Science Department, Chauvenet Hall
United States Naval Academy
Annapolis, Maryland 21402

6. Professor G. M. Lundy 3
Computer Science Department, Code 52Ln
Naval Postgraduate School
Monterey, California 93943-5000

7. Professor Man-Tak Shing, 2
Computer Science Department, Code 52Sh
Naval Postgraduate School
Monterey, California 93943-5000

8. Professor L. Williamson 2
Computer Science Department, Code 52Wi
Naval Postgraduate School
Monterey, California 93943-5000

82

